
Wind Ramp Events Validation in NWP Forecast Models during the Second Wind Forecast
Improvement Project (WFIP2) Using the Ramp Tool and Metric (RT&M)

IRINA V. DJALALOVA,a,b LAURA BIANCO,a,b ELENA AKISH,a,b JAMES M. WILCZAK,b JOSEPH B. OLSON,a,b

JAYMES S. KENYON,a,b LARRY K. BERG,c ADITYA CHOUKULKAR,a,d RICHARD COULTER,e

HARINDA J. S. FERNANDO,f ERIC GRIMIT,g RAGHAVENDRA KRISHNAMURTHY,c,f JULIE K. LUNDQUIST,h,i

PAYTSAR MURADYAN,e DAVID D. TURNER,b AND SONIA WHARTON
j

aCooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, Colorado
bNational Oceanic and Atmospheric Administration/Earth Systems Research Laboratories, Boulder, Colorado

cPacific Northwest National Laboratory, Richland, Washington
dVibrant Clean Energy LLC, Boulder, Colorado
eArgonne National Laboratory, Lemont, Illinois

fCivil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, Indiana
gVaisala Inc., Seattle, Washington

hDepartment of Atmospheric and Oceanic Sciences, University of Colorado Boulder, Boulder, Colorado
iNational Renewable Energy Laboratory, Golden, Colorado

jLawrence Livermore National Laboratory, Livermore, California

(Manuscript received 7 May 2020, in final form 3 September 2020)

ABSTRACT: The second Wind Forecast Improvement Project (WFIP2) is a multiagency field campaign held in the

Columbia Gorge area (October 2015–March 2017). The main goal of the project is to understand and improve the forecast

skill of numerical weather prediction (NWP)models in complex terrain, particularly beneficial for the wind energy industry.

This region is well known for its excellent wind resource. One of the biggest challenges for wind power production is the

accurate forecasting of wind ramp events (large changes of generated power over short periods of time). Poor forecasting of

the ramps requires large and sudden adjustments in conventional power generation, ultimately increasing the costs of

power. A Ramp Tool and Metric (RT&M) was developed during the first WFIP experiment, held in the U.S. Great Plains

(September 2011–August 2012). TheRT&Mwas designed to explicitlymeasure the skill of NWPmodels at forecastingwind

ramp events. Here we apply the RT&M to 80-m (turbine hub-height) wind speeds measured by 19 sodars and three lidars,

and to forecasts from the High-Resolution Rapid Refresh (HRRR), 3-km, and from the High-Resolution Rapid Refresh

Nest (HRRRNEST), 750-m horizontal grid spacing, models. The diurnal and seasonal distribution of ramp events are

analyzed, finding a noticeable diurnal variability for spring and summer but less for fall and especially winter. Also, winter

has fewer ramps compared to the other seasons. The model skill at forecasting ramp events, including the impact of the

modification to the model physical parameterizations, was finally investigated.

KEYWORDS: Model comparison; Model evaluation/performance; Renewable energy; Wind effects

1. Introduction

The second Wind Forecast Improvement Project (WFIP2)

included an 18-month field campaign (October 2015–March

2017) held in the Columbia River Gorge and basin, in Oregon

and Washington states, a region well known for its excellent

wind resources. WFIP2 was led by the U.S. Department of

Energy (DOE) and by the National Oceanic and Atmospheric

Administration (NOAA), and was supported by several other

public and private institutions (Shaw et al. 2019). Its main goal

was to increase the accuracy of numerical weather prediction

(NWP) model forecasts of wind speed in complex terrain,

through the improvement of NWP physical parameterization

schemes. The models tested in this study are the High-

Resolution Rapid Refresh (HRRR) model, with 3-km hori-

zontal grid spacing, and the High-Resolution Rapid Refresh

Nest (HRRRNEST) model, with 750-m horizontal grid spacing

(Olson et al. 2019a). At the end of the campaign, four 6-week

periods, one for each season, were identified to assess the model

improvements. We will hereafter refer to these four 6-week in-

tervals as ‘‘reforecast periods.’’ Over these four reforecast pe-

riods, the HRRR and HRRRNEST were run in control (CTL)

and experimental (EXP) setups, where the experimental con-

figuration included parameterization modifications developed,

tested and applied to the models during the field campaign

(Olson et al. 2019a,b) to improve the forecast of hub-height wind

speeds. We will hereafter refer to these four 6-week testing ex-

periments as ‘‘reforecast runs.’’

Model verification and validation were performed using a

variety of instruments deployed during WFIP2 (Wilczak et al.

2019b; Pichugina et al. 2019; Bianco et al. 2019; Grimit 2020).

Among those were 19 sonic detection and ranging (sodars) and

7 light detection and ranging (lidars), measuring wind speed

and direction from aminimum of 10m to a few hundredmeters

(or more) above ground level (AGL), depending on the sys-

tem. These heights represent the layer of the atmosphere most

relevant for wind energy production, as turbine rotor-disk
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height generally ranges from 40 to 150m. Standard statistics

[bias and mean absolute error (MAE)] of average hub-height

80-m wind speed used to evaluate the improvements in fore-

casts have been described in Bianco et al. (2019). In the present

study we emphasize validation of the model improvements at

forecasting wind ramp events.

Wind ramps are rapid changes of wind speed over short

periods of time, which result in rapid changes in power pro-

duction. The correct forecast of ramp events is important for

wind energy operators since, if they are not forecast accurately

in directionality, amplitude and timing, the operator might

need to request other forms of power production in a short

period of time tomeet the power demand. These rapid changes

in power source can be quite expensive to accommodate, and

being able to rely on an accurate NWP model could result in

significant cost savings. As wind power penetration increases,

wind ramps can become larger and more critical for power

operators.

There is an increasing interest in the evaluation of wind

power ramp forecasting, which has resulted in several studies.

Ferreira et al. (2011) presented a survey on wind power ramp

forecasting, Gallego-Castillo et al. (2015) provided a review on

the recent history of wind power ramp forecasting, and Zhang

et al. (2014) analyzed the advantage of using a short-term wind

power forecast to improve the accuracy of the wind power

ramp forecasting during the first Wind Forecast Improvement

Project (WFIP). These studies (and others such as Bossavy

et al. 2010; Cutler et al. 2007; Greaves et al. 2009; Kamath 2010;

Zack et al. 2010) used different methods for the identification

of wind ramp events. The method used here (based upon

Bianco et al. 2016) includes several aspects of the earlier ap-

proaches, and also enables us to consider different ramp defi-

nitions simultaneously.

Previous analyses of wind ramp events in the WFIP2 region

provide insights into the daily distribution of ramp events and

their relative severity levels (Kamath 2010), evaluating the

Weather Research and Forecasting (WRF) Model at predict-

ing ramp events using different boundary layer schemes (Yang

et al. 2013), or introducing a probabilistic approach for fore-

casting ramp events (Worsnop et al. 2018). In the present study

we use a tool that gives us the option to not only consider one

or two ramp definitions, but a matrix of ramp definitions. Also,

the skill of the model considers the difference in duration of

observed and forecast ramps, as well as the difference in their

amplitudes and timings.

The manuscript is organized as follows: section 2 describes

the dataset utilized in this study, including both observations

and NWP models and their correlation with the Bonneville

Power Administration (BPA) power generation data; section 3

summarizes the Ramp Tool and Metric (RT&M) used to cal-

culate model forecast skill of ramp events and the approach

that we take to organize the model run outputs for this study;

section 4 describes the observed diurnal and seasonal charac-

teristics of 80-m wind speed and ramp events; section 5 con-

tains the RT&M results of model skill score statistics, while

section 6 presents the same RT&M results but for bias-

corrected models. Finally, section 7 draws conclusions and

outlines a future research plan.

2. Dataset description

a. Observational dataset

Data from 19 sodars and seven lidars were collected during

the WFIP2 field campaign. While most of the sites had either a

sodar or a lidar, several sites had both instruments. At these

locations, the instrument having themost complete dataset was

selected to be included in this study. In addition, a lidar located

at the Troutdale, Oregon, site has not been included in our

analysis because this location is on the west side of the Cascade

Mountains while our area of interest lies in the high wind en-

ergy production area east of the Cascades. This resulted in 22

sites, 19 with sodars and 3 with lidars used in this study. The

map with the locations of the 22 sites is presented in Fig. 1 and

instrument’s location, manufacturer and institution in charge

are described in Table 1 of Bianco et al. (2019).

Since not all of the 19 sodars and three lidars were contin-

uously operational (hardware or software failures occurred

during the experiment, as well as late deployments or early

removals), measurements for our analysis were available from

20, 18, 16, and 19 instruments for the spring, summer, fall, and

winter reforecast periods, respectively.

b. NWP models

Asmentioned earlier, the models of interest in this study are

the HRRR and the HRRRNEST, since their refined grid

spacing compared to other NWP models better resolves the

complex orography. For the four 6-week reforecast periods the

HRRR and HRRRNEST were run out to 24 forecast hours,

with 15-min output, using initial conditions initialized from the

operational Rapid Refresh model (RAP; Benjamin et al.

2016); no additional data assimilation was used when initial-

izing theHRRR for this study. Similarly, theHRRRNESTwas

initialized the same way, but getting its initial and boundary

conditions from the 3 h forecasts provided by the HRRR. The

four reforecast periods covered the four seasons: the spring

period extended from 25 March to 7 May 2016; the summer

period from 24 June to 7 August 2016; the fall period from

24 September to 7 November 2016; and the winter period from

FIG. 1. Map of the 19 sodar (blue circles) and three lidar (red tri-

angles) locations, selected for this study.

2408 WEATHER AND FORECAST ING VOLUME 35

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 09/16/21 01:08 PM UTC



25 December 2016 to 7 February 2017. The models were ini-

tialized every 12h (at Z00—0000 UTC, and at Z12—1200 UTC;

with local standard time, LST5UTC2 8). The HRRRNEST

runs were delayed by 3 h to avoid spinup problems, so that a

gap in the HRRRNEST model output exists from forecast

horizon 00 to forecast horizon 02 (from 0000 to 0245 UTC for

the Z00 initialized run, and from 1200 to 1445 UTC for the Z12

initialized run). The schematic of the availability of the HRRR

and HRRRNEST model outputs for the reforecast periods is

presented in Fig. 2.

For the reforecast runs, the models were run in both CTL

and EXP setups. Major differences between the two include

new parameterizations to the HRRR and HRRRNEST

physics suite, improvements to existing parameterizations,

and improvements to numerical methods. The reader is re-

ferred to Olson et al. (2019a,b) for details on these changes.

Some developments, including mixing length revision, the ad-

dition of surface drag due to subgrid-scale orography, and

modification of the horizontal diffusion, all improve the

maintenance of cold pools. Since these developments show the

biggest impacts on low-level wind compared to other model

modifications, wemay expect the biggest improvement of ramp

skill in winter.

For our analysis, to compare to the observations, the 80-m

wind field model output is horizontally interpolated bilinearly to

the 22 site locations using the four closest grid points. In the

vertical, model levels closest to the ground are approximately 10,

38, 88, 169, and 288m AGL, from which wind speed is linearly

interpolated to 80m AGL using the two closest model levels.

From here on, we reference the ‘‘model data’’ as the model

output interpolated to the 22 instrument locations at 80mAGL.

c. Correlation with BPA power generation data

The instruments used in our analysis are located inside the

regional grid operator’s (BPA) territory (Fig. 3), which includes

Idaho, Oregon, Washington, western and small parts of eastern

Montana, California, Nevada, Utah, and Wyoming (https://

www.bpa.gov/news/AboutUs/). Wind power generation in

the BPA territory reaches more than 6000MW, with a peak

value close to 4500MW in the WFIP2 Columbia Basin area.

To evaluate NWP models, we convert 80-m wind speeds to

rated pseudo-power (hereafter referred to simply as power),

using a generic/normalized power curve provided in Wilczak

et al. (2019a). The same power conversion curve is used for

both observations and NWP model outputs. For the four re-

forecast periods, Fig. 4 compares the aggregated wind-power

generated from the 22 WFIP2 observation locations to the

actual wind power production on the BPA system (https://

transmission.bpa.gov/Business/Operations/Wind/) and to the

aggregated power forecasts from the HRRR CTL(Z12 ini-

tialized runs) model at the same 22 sites.

Although the area of the BPA system is much larger that the

WFIP2 study area, the comparison shown in Fig. 4 indicates that

the instruments deployed duringWFIP2 provided a representative

measureof thewindpowerproductionover the entireBPAsystem,

due to the concentration of wind plants in the study area domain.

This figure also shows how winter differs from all other seasons

with a lot of days with zero, or close to zero, power production.

These low-production periods are due to long-duration cold pool

events in winter (McCaffrey et al. 2019). During these events, the

river basin experiences stagnant cold air persisting over the area for

several days, with associatedweakwind speeds close to the surface.

Pearson correlation coefficients for observed versus BPA

power, and for observed versus HRRR CTL power are pre-

sented in both Fig. 4 and Table 1. Table 1 also shows correla-

tion coefficients for HRRR CTL versus BPA power for every

reforecast period. Similar results are found for the Z00 ini-

tialized runs and for the other model runs. The purpose of this

comparison is to prove that the observations used in this study

represent the power production in the whole BPA area.

3. Ramp Tool and Metric

a. Ramp analysis configuration

ARamp Tool andMetric (RT&M; Bianco et al. 2016; Akish

et al. 2019) was developed during the firstWFIP (Wilczak et al.

FIG. 2. Schematic of the HRRR and HRRRNEST model run outputs for the four 6-week

reforecast runs (LST 5 UTC 2 8).

FIG. 3. Bonneville Power Administration area. The BPA re-

newable generation assets map is adapted from Western Area

Power Administration (2018).
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2015) that was held in the U.S. Great Plains from September

2011 to August 2012. The RT&M consists of three compo-

nents: in the first component, ramp events are identified (by the

following parameters: central time of the ramp Ct; change in

power Dp; and duration Dt) in the time series of observed and

forecast power (80-m wind speeds are converted into power

inside the RT&M); in the second component, each forecast

ramp event is matched in time with all observed ramp events

that overlap in duration; and in the third component, the skill

score of theNWPmodel is computed on an hourly basis (taking

into account errors in the center time, duration and change in

power; i.e., the score is a function of the cube root of the

product of the errors on Ct, Dp, and Dt; see Bianco et al. 2016,

for complete formulas).

A ramp is detected when the change in power meets or

exceeds a specified Dp threshold over a time interval equal

to or shorter than a specified Dt threshold. Since no unique

definition of a ramp event exists, the RT&M allows one to

compute the ramp skill over a user-selected set of different

ramp definitions and then averages over them. Each ramp

definition has its own possible Dp and Dt. In the standard

configuration, Dp is 30%, 40%, 50%, 60%, and 70% of the

rated power capacity, and Dt is 30, 60, 120, and 180min, for a

total of 20 ramp definitions over which the skill is averaged. For

each ramp definition the time interval Dt is used as a sliding

window over which the power change is measured. If the power

change exceeds the Dp specified for that ramp definition, a

ramp is found. Continuous ramps for each ramp definition are

concatenated in a single ramp. For this reason, ramp lengths

could be longer than the time interval specified. The process is

repeated for all ramp definitions. For simplicity, later in the

analysis we will often show results from 30% Dp over 180-min

Dt, because the lowest threshold of 30% Dp will also include

larger magnitude ramps, and the longest temporal threshold of

FIG. 4. Time series of aggregated rated-power for the four reforecast periods: (top left) spring, (top right)

summer, (bottom left) fall, and (bottom right) winter. Power (left y axis) computed from observed wind speed

data are shown in black on all panels. Actual power generation data (right y axis; GW) provided by the BPA are

in purple in the top panels, and the HRRR CTL power data (Z12 initialized runs, left y axis) are in beige in the

bottom panels.
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180-min Dt will also include shorter ramps, therefore a ramp

definition of 30% Dp over 180-min Dt could potentially include

many ramps of the 20 ramp definitions.

After the model and observation ramps are matched, the

skill of the model at forecasting ramp events is finally com-

puted, accounting for forecast ramps matched to observed

ramps, forecast ramps not matched with observed ramps, and

observed ramps not matched with forecast ramps. This results

in eight possible scenarios (obs/model ramp: up/up, null/up,

down/up, up/null, down/null, up/down, null/down, and down/

down). For all possible ramp definitions, the score is calculated

as the total score divided by the total number of matched and

unmatched ramp events. Unmatched ramps have a null skill

score. For matched ramps, the ramp skill score of the model

has a value from 21 to 11 and is determined by three pa-

rameters: the error in power change (jmodelDp2 obsDpj), the
error in time duration (jmodel Dt2 obs Dtj). and the difference

in central time (jmodel Ct2 obs Ctj) [see Eqs. (1)–(6) of Bianco
et al. 2016]. A negative score is assigned when two ramps with

opposite power changes arematched, while matched rampswith

the same sign in a power change result in a positive skill.

b. Artificial ramps: ‘‘Stitching method’’ versus ‘‘forecast
method’’

The RT&M offers two possible approaches for organizing

the dataset, called the ‘‘stitching method’’ and the ‘‘forecast

method.’’ The ‘‘stitching method’’ creates time series of model

forecasts, ideally for each particular forecast horizon for hourly

updatedmodels (or for a certain number of forecast hours from

each consecutive forecast runs, for nonhourly updated modes),

while the ‘‘forecast method’’ simply searches for ramps through

the duration of an individual forecast. Previous studies (Bianco

et al. 2016; Akish et al. 2019) found that these two approaches

give quite consistent results when using hourly updated fore-

casts. It is not clear a priori if the stitching method is still ap-

plicable when using simulations separated by greater lengths as

in the WFIP2 reforecast runs. In this case, rather than concate-

nating by forecast horizon as the stitchingmethod was originally

designed, we could create a time series of themodel outputs over

the entire length of each of the four reforecast periods, by con-

catenating the reforecast runs consecutively.

Figure 5 provides a closer look at the RT&M on the WFIP2

dataset, highlighting differences between the stitching method

and forecast method when applied to a 5-day period (29 June–

3 July 2016). The time series of power shown in the three-top

panels, are the observed values andmodel concatenated values

from the Z00 and Z12 runs. The bottom panel shows the skill

score for each pair of matching ramps.

Several cases of ‘‘artificial ramps’’ are apparent in both of

themodel time series (second and third panels), at the stitching

times highlighted in black circles. The artificial ramps occur

because of the large forecast lengths (24 h) between consecu-

tive forecasts, which allows the forecast to drift considerably

before it is reinitialized, and results in 40%–60% more ramps

found in the stitching method than the forecast method at or

near the time of concatenation. Although for the HRRR it

would have been possible to concatenate forecasts every 12 h,

this was not possible for the HRRRNEST because gaps in the

concatenated model output would exist from forecast horizon

00 to forecast horizon 02 of each model run. Since we wish to

compare the skill of the HRRR with the HRRRNEST, it was

necessary to use the longer 24 h intervals between consecutive

model runs for both models. Because of these difficulties with

the ‘‘stitchingmethod,’’ only the ‘‘forecast method’’ is used and

discussed in this paper.

The ‘‘forecast method’’ experiences no degradation for in-

frequently reinitialized forecasts, with single forecast runs be-

ing compared independently to the corresponding observational

time series. This method has its own limitations, however, since

the initial and the ending forecast horizons can suffer from

truncated ramps that could start soon before the beginning, or

end soon after the end of the forecast cycle. Since each ramp skill

score is assigned to the hour closest to the rampcentral time, skill

scores cannot be computed for some length of time near the

beginning and end of each forecast, with the length dependent

on the ramp time-length being examined. For theHRRRmodel,

using a Dt ramp length specification of 3 h, ramp skill scores

could be assigned to forecast horizons 3–21h. However, due to

the 3-h delay of the HRRRNEST model, ramp scores can only

be assigned to forecast horizons 6–21h.

Due to these considerations and because we want to assign a

score to each hour of the daily cycle, the model skill score is

only calculated from forecast horizons 6 to 17 of both the Z00

andZ12 initialization runs of both theHRRRandHRRRNEST

models. Specifically, the model skill score will be averaged over

hours 0600–1700 UTC for the Z00 initialization runs, and over

hours 1800–0500 UTC of the next day for the Z12 initialization

runs so that every hour of the day is covered by one of the two

model runs and the HRRR and HRRRNEST models will be

treated equally. The colored ramps in the model data are shown

only if their central times fall within forecast horizons 6–17.

These time periods are shaded in Fig. 5 (gray for the Z00 ini-

tialization runs and pink for the Z12 initialization runs). Ramps

are only shown for the model over the shaded areas. This ap-

proach to only compute the ramp skill over forecast hours 6–17

for each model is used for the rest of the manuscript.

Model and observational ramps are matched when their

duration times overlap. For this reason, one observational

ramp could be matched to several model ramps and vice versa.

The ramp skill score is given in the bottom panel of Fig. 5,

where for the final model skill score we combine the informa-

tion from the Z00 and Z12 initialization times for the WFIP2

model reforecast runs. The skill score of each of the seven

model/observation pairs of matched ramps is almost always

positive, and close to a11 value, being negative in one case only

(3 July 2016), when a down-ramp in theHRRRCTLmodel (Z00

TABLE 1. Pearson correlation coefficients for observed power vs

BPA, for HRRR CTL vs observed power, and for HRRR CTL

power vs BPA for each season.

Correlation Spring Summer Fall Winter

OBS/BPA 0.93 0.93 0.78 0.86

HRRR CTL/OBS 0.86 0.92 0.88 0.75

HRRR CTL/BPA 0.80 0.82 0.71 0.69
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initialization time) ismatched to an up-ramp in the observations,

generating a negative score. All unmatched ramps, both in ob-

servational or modeled time series, are assignedwith a null score

(in this example there are five unmatched ramps).

As shown above, the stitching method results in spurious

ramps when applied to infrequently reinitialized forecasts, and

therefore is not recommended for the current dataset. Further,

for the forecast method, windowing the number of hours in

each forecast cycle allows for the same validation hours to be

used and for the entire daily cycle to be covered, for theHRRR

and HRRRNEST, so that fair comparisons can be made be-

tween the two models.

4. Diurnal and seasonal variability of 80-m wind speed
and ramp events

Before showing the model ramp skill score results, we

present a brief analysis of ramp statistics from the observed

data. In particular, we analyze the dependency of the prevail-

ing type of ramps on the diurnal variation of the change in

mean wind speed in Fig. 6.

The gray shadow areas indicate the times during the diurnal

cycle when the wind is decreasing (wind speed change is

negative), while the pink areas indicate hours when there are

more down ramps than up-ramps (up/down ratio , 1). The

agreement between the two is visible during all seasons, but is

most distinct during summer. The correlation coefficients be-

tween these lines are shown in red with the highest correlation

in summer (0.89), followed by spring (0.72), winter (0.6), and

then fall (0.42). Thus, the diurnal variability of up- versus

down-ramps is seen to be strongly dependent on the diurnal

variation of the mean wind speed in summer, much less so in

fall, with intermediate correlations in spring and winter. The

strong dependence found in summer is due to thermally driven

gap flows that result in large amplitude diurnal variations in

wind speed (Pichugina et al. 2019; Wilczak et al. 2019b).

To examine the possibility of an elevation dependence of the

diurnal and seasonal variability, the observed diurnal vari-

ability of 80-m wind speed is analyzed in Fig. 7 for different site

elevations. While the black line is the aggregated 80-m wind

speed over all sites, the blue line includes the sites with elevation

between 0 and 300m (AON3, AON7, BOR, RFS, ARL), the

green line is for those with elevation between 300 and 700m

(AON2, AON4, AON5, GDL, WCO,WWL, YKM, VCR), and

the red line includes the sites with elevation above 700m (AON1,

AON6, AON8, AON9, CDN, DCR, PVE, RTK, GDR).

FIG. 5. Time series of normalized power from (from top to bottom) aggregated observations,

HRRRCTL stitched outputs fromZ00 and Z12 runs, and ramp skill score for 5 days in summer

2016. Ramps in the time series with at least 30% Dp over at least 180-min Dt are colored red for

up- and green for down-ramps. Model ramps are shown only when their central time falls in the

interval of the forecast horizons 06–17 (areas shaded in gray for Z00 runs and with pink for

Z12 runs).
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While wind speeds at all elevations show a similar diurnal

pattern for each season, each elevation shows a different seasonal

variability. Sites with lower elevation (blue and green lines) ex-

perience stronger 80-m winds in summer compared to those at

higher elevation (red line), for fall and winter the opposite is true.

This seasonal contrast is consistent with the seasonal variability of

gap flow events. Gap flows occur preferentially in summer and

spring (Sharp and Mass 2002), with accelerated winds at lower

elevations. In contrast, cold pool events, with low wind speeds

close to the surface, occur more often in winter and fall (Bianco

et al. 2019; McCaffrey et al. 2019).

5. Models’ skill at forecasting ramp events

To evaluate model ramp skill, it is informative to first ex-

amine time series of observed and forecast power and the de-

tected ramps in each. Observations and HRRR CTL power

data are shown in the three panels of Fig. 8 for all reforecast

periods. The entire 24 h of the model simulations are concat-

enated, although ramps are only detected for forecast horizons

06–17. Identified up-ramps are colored in red while down-

ramps are colored in green. The numbers of ramps are on the

right side of each panel, with red numbers for up-ramps and

green numbers for down-ramps.

In general, the number of ramps in the observations and the

sum of the numbers of ramps in the Z00 and Z12 model runs

(only taken from forecast horizons 06–17) are very similar, with

values summarized in Table 2.

Spring, and especially summer, have large differences in the

number of up and down ramps between the Z00 and Z12 runs.

This contrast is due to the strong diurnal variation of the mean

wind and ramp ratio shown in Fig. 6 and the hours of the day

that each run spans. In contrast, the fall and winter periods

have almost the same number of up and down ramps for both

initialization times, as suggested by Fig. 6. Also, fewer ramps

are present in the observed andmodel data in winter compared

to other seasons, as expected from Fig. 4.

Winter and summer seasons have very different character-

istics in 80-m wind speeds and ramp event distributions com-

pared to each other and also to the other two seasons.

Therefore, in Fig. 9 we introduce a new visual tool to help

recognize possible patterns of diurnal distribution of ramp

events and to compare diurnal ramp distributions of observed

and model data. These diurnal distributions for the summer

and winter seasons of up- and down-ramps withDp5 30%, and

Dt5 180min, are computed using the aggregated time series of

power. The observed composite diurnal ramp distribution is in

the upper panel, while all available models (HRRR CTL,

HRRR EXP, HRRRNEST CTL, and HRRRNEST EXP) are

from the second to the bottom panel of the figure. Similarl to

Fig. 5, 06–17 forecast horizon hours are colored in gray for the

data of the Z00 reforecast run and in pink for the same horizon

FIG. 6. Observed diurnal composite of aggregated 80-m hourly wind speed change (black lines) and corre-

sponding ratio of the total number of up-ramps summed at individual sites to the total number of down-ramps (red

lines) for a ramp definition of Dp5 30%, and Dt5 180min. Gray areas indicate the hours of decreasing wind speed

(du/dt , 0), and pink areas indicate the hours with down-ramps prevailing (up-ramps/down-ramps , 1).
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hours of the Z12 reforecast runs. This visual representation

of the ramps helps in comparing the diurnal distribution of

the ramps between the models and observation or between

two models.

The diurnal cycle of ramp events in summer (left panels of

Fig. 9) has a very apparent pattern with up-ramps happening

mostly from 2000 to 0200 UTC (1200–1800 LST) while down

ramps are mostly concentrated between 0400 and 1400 UTC

(2000–0600 LST), due to the increase and decrease in wind

speed at those times that was shown previously in Fig. 6 and

possibly by changes in the diurnal cycle of vertical mixing in the

boundary layer during the warm months compared to fall and

especially winter seasons. This pattern is perfectly mimicked in

all models except for the HRRR EXP, whose down ramps in

summer occur on average almost 2 h earlier. This discrepancy

results in a lower skill score for this model compared to the

other models for the summer season.

In contrast to the summer period that has a distinct diurnal

variation in the ramp climatology, due to more stable condi-

tions winter ramps in the right panels of Fig. 9 are distributed

evenly over the daily cycle without a specific pattern. It is ap-

parent, however, that theHRRREXP tends to find fewer ramp

events in winter compared to its CTL version and to the ob-

servation, but HRRR EXP ramps are better matched to the

observed ones compared to the HRRR CTL ramps, which

results in higher skill for the HRRR EXP model, as will be

highlighted later in the analysis. Three particular modifications

of the HRRR EXP model, namely mixing length changes, a

modified horizontal diffusion, and the inclusion of small-scale

gravity wave drag, can reduce the near-surface wind speed in

cold pool episodes, producing more skillful cold pool forecasts

(Olson et al. 2019a,b).

The skill score of the four models analyzed in this study is

presented in Fig. 10 for all reforecast periods and averaged

annually (left panels), for all ramps together (top-left panel),

for up-ramps (middle-left panel), and for down-ramps (bottom-

left panel). Most of the models have a higher ramp skill score in

spring and summer compared to fall and winter. This is related

to the higher number of matched ramps found in spring and

summer. Also, skill scores for up-ramps are noticeably higher

compared to those of down-ramps for all seasons. Two inter-

esting cases of significant skill score differences are highlighted

in Fig. 10 (in spring for up-ramp events between the HRRR

EXP in blue and the HRRRNEST EXP in light-blue, due to the

model resolutions difference, and in winter for down-ramp

events between the HRRR CTL and the HRRR EXP, due

to the differences in model physics) and will be discussed in

detail below.

The two right panels of Fig. 10 show the model improve-

ments due to the different physical parameterizations of the

EXP versus the CTL runs (top-right panel) and due to the

different model resolution (bottom-right panel). The only

FIG. 7. Observed diurnal variability of 80-m hourly wind speed aggregated over all sites (black line) and over an

average at three elevation ranges (0–300m in blue, 300–700m in green, and above 700m in red) for the four

reforecast periods [(top left) spring, (top right) summer, (bottom left) fall, and (bottom right) winter].
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improvements due to the new physics in either model resolu-

tions are for a much better performance of the HRRR EXP

compared to the HRRR CTL in winter and a better perfor-

mance of the HRRRNESTEXP compared to the HRRRNEST

CTL in spring. We emphasize that the differences between the

right upper panel of Fig. 10 and Fig. 14b of Olson et al. (2019a)

are due to differences in the model ramp skill analysis ap-

proaches. While in Olson et al. (2019a) all available forecast

hours are used for each model to compute the skill score, the

approach used here only includes the skill scores from ramps

centered at forecast hours 6–17, to treat the HRRR and the

HRRRNEST equally. While larger improvements are expected

for earlier forecast horizons, we nevertheless find a significant

HRRR EXP improvement in winter for the later forecast

horizons of 6–17, due to more accurate simulation of cold

pool events. In stable, cold pool conditions the HRRR EXP

calculates not only lower near-surface wind speeds, which

reduce the wind speed bias, but also a reduced near-surface

vertical wind shear (Olson et al. 2019a), both due to a drag

parameterization improvement that accounts for subgrid-

scale orography. Stable conditions were simulated more ac-

curately in the HRRR EXP model (shown later) due to a

FIG. 8. Observed and modeled (HRRR CTL) time series of the aggregate normalized power for the four re-

forecast periods [(top left) spring, (top right) summer, (bottom left) fall, and (bottom right) winter]. Observed

values are in the top panels of each of the reforecast periods andmodeled ones are in the middle and bottom panels

for Z00 and Z12 runs separately. Up-ramp events (in red) and down-ramp events (in green) (Dp5 30%, and Dt5
180min) are found only for forecast horizons 6–17 of each of the two model initialization times. The number of up-

and down-ramps (in red and green, respectively) are presented by the numbers on the right side of each panel. Note

that to get the number of up (or down) model forecast ramps, the number found in the Z00 initialization runs have

to be added to those found in the Z12 initialization runs.

TABLE 2. Number of up- and down-ramps found in the observation

and model for the four forecast periods.

Spring Summer Fall Winter

Up-ramps Observation 25 23 28 11

Model 24 27 29 16

Down-ramp Observation 15 21 28 14

Model 25 29 24 16
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reformulated mixing length in the revised MYNN scheme,

but also could have been influenced by a better representa-

tion of the subgrid-scale clouds in the experimental model. A

final improvement for cold pools came from a new numerical

method that calculates horizontal diffusion on a Cartesian

grid instead of using sigma coordinates. This change reduces

undesired vertical mixing in regions of steep topography. All

physical parameterization improvements were tested and

evaluated for model resolutions . 1 km, and have not been

established for model resolutions below 1 km. This explains

why the HRRRNEST EXP does not show the same im-

provement for winter.

The skill improvement due to the resolution ismore obvious:

high-resolution models have higher scores compared to low-

resolutionmodels in almost all seasons. The higher skill seen in

the higher-resolution simulations can come from better resolv-

ing atmospheric phenomena, by better resolving the surface

characterization (terrain and land cover), or both. However,

without a third set of simulations in which the coarser surface

characterization is run with the higher-resolution atmospheric

model, it is not possible to separate out these effects.

From the results presented in Fig. 10, one of the biggest

differences in model ramp skill score is found in spring for up-

ramp events, between the HRRR EXP (score equal to 0.25)

and the HRRRNEST EXP (score equal to 0.34). To under-

stand which of the three components of the skill score (errors

on Dp, Dt, and Ct) contributes more to this large difference, in

Fig. 11, we show the spring composite diurnal cycle of up-ramp

events from the HRRR EXP (bottom-left panel), and

HRRRNEST EXP (bottom-right panel) and ramps in the

observations (both upper panels) for one ramp definition of

Dp 5 30% and Dt 5 180min.

Matched up-ramps in the upper/lower panels are colored in

green, where the matching depends on the closeness in time of

the observed andmodel ramp center times (Bianco et al. 2016).

We note that two ramps that occur near the same time in the

FIG. 9. Diurnal distribution of up- and down-ramps (Dp 5 30%, and Dt 5 180min) found in the (from top to

bottom) aggregated observations, in the HRRR CTL run, in the HRRR EXP run, in the HRRRNEST CTL run,

and in the HRRRNEST EXP run for the (left) summer and (right) winter reforecast periods. Each ramp is rep-

resented by two crossed lines, with the vertical blue line for the power change and the horizontal red line for the

duration of each ramp. The central time of the ramp is the intersection of these two lines. Red and blue arrowsmark

sunrise and sunset, respectively.
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diurnal cycle plot may not be matched because they occurred

on different days. The number of all unmatched up-ramps be-

tweenOBS andHRRREXP ramps (14) is less than the number

of unmatched up-ramps between OBS and HRRRNEST EXP

(17), and yet theHRRRNESTEXPhas amuch better up-ramp

skill score. This indicates that the higher skill score for the

HRRRNEST EXP comes from better matched up-ramps. In

fact, bothmodels have almost the same up-rampsmatchedwith

the observation (17 for the HRRR EXP and 18 for the

HRRRNEST EXP), but the average of the errors in power

change (jmodel Dp 2 obs Dpj) for the matched ramps are

almost twice larger for the HRRR EXP (0.18) compared to

HRRRNEST EXP (0.1). This assessment is a result of our

analyzing one ramp definition only, Dp 5 30% and Dt 5
180min.Whenwe consider all 20 ramp definitions, we found an

even larger difference between the value of the averaged errors

in power change of the HRRRNEST EXP (0.07) compared to

the HRRR EXP (0.16), while the averaged difference in cen-

tral time (jmodel Ct2 obs Ctj) and averaged error in duration

(jmodel Dt2 obs Dtj) are very close (52 and 70min for central

time errors and 60 and 49min for ramp duration errors for

HRRR EXP and HRRRNEST EXP, respectively).

FIG. 10. (left) Skill score of the four models analyzed in this study, over the four reforecast periods, aggregating

the power over all sites. (top right) Model improvements due to the physics difference between CTL and EXP runs

(HRRR model is in blue, HRRRNEST in red). (bottom right) Model improvements due to the difference in

resolution (the CTL runs are in blue, the EXP runs are in red).

FIG. 11. Composite diurnal cycle of up-ramp events from (top) the observations, (bottom left) HRRR EXP, and

(bottom right) HRRRNEST EXP for the spring reforecast period. Matched ramps are colored in green and un-

matched ramps are colored in red–blue.
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Another interesting situation is the skill of the models at

forecasting down-ramp events during the winter period, when

the improvement in the model skill score due to the different

physics (but same resolution) is evident between the HRRR

CTL andHRRREXP. First, both the observations andmodels

for this time period have many fewer ramps compared to other

seasons, as shown in Fig. 8, and second, the ramps are dis-

tributed sporadically throughout the diurnal cycle (Fig. 9).

Figure 12 shows all down-ramps for theHRRRCTL on the left

bottom panel and for theHRRREXP on the right bottom panel,

with the corresponding observed ramps in both top panels, for

one ramp definition of Dp5 30% andDt5 180min. All matched

ramps are colored in green. While the numbers of observational

unmatched ramps in the top panels are almost the same (7 vs 9),

the HRRR CTL has many more unmatched ramps compared to

the HRRR EXP, 10 vs 1. When we analyze only the matched

ramps, we find that the HRRREXPmodel has smaller averaged

errors in power change (0.09 vs 0.29 of the HRRR CTL) and

averaged error in duration (69min compared to 114min of the

HRRR CTL). Only the averaged difference in central time is

slightly smaller for the HRRR CTL compared to the HRRR

EXP, 57min against 70min, for a ramp definition of Dp 5 30%

and Dt 5 180min. When looking at all 20 ramp definitions, all

ramp parameter estimates are better for the HRRR EXP com-

pared to theHRRRCTL (averaged power error forHRRRCTL

equals to 0.22 whereas the same power error for HRRR EXP

equals to 0.08; averaged difference in central time and ramp du-

ration errors equal to 53 and 78min for the HRRR CTL and 48

and 50min for theHRRREXP), therefore providing altogether a

higher score for the HRRR EXP for wintertime ramps.

Finally, to explain and demonstrate the better performance

of the HRRREXPmodel compared to other models in winter,

in Fig. 13 we show the time series of the aggregated power from

observations and from the four models, from both the Z00 and

Z12 runs with the skill score of all ramps for two days in 4–

5 February 2017.

These days are chosen because they present a rapid power

change at the end of a long cold pool event (McCaffrey et al.

2019). Observed data are the same in all four columns. Both

experimental models show better agreement with the obser-

vational time series compared to the control runs (second and

fourth columns), but the HRRR EXP time series is much

closer to reality. The HRRR EXP is the only model predicting

ramps at the right time and with an almost perfect power

change and duration (producing the highest skill score), while

the other models forecast more unmatched ramps prior to the

end of the cold pool event, due to their tendency to erode the

cold pool earlier (Wilczak et al. 2019b).

6. Ramp statistics for bias-corrected data

As shown in Bianco et al. (2019), all models utilized in this

study have wind speed biases that vary diurnally, with larger

values at night and smaller values during daytime. After testing

several ways to correct the models for their biases, seasonally,

monthly, or diurnally, we found that a diurnal bias-correction

results in the highest ramp skill scores. To apply this diurnal

bias-correction, we calculated the power bias at each site, for

each reforecast period and at each hour of the diurnal cycle,

and removed it from the model output.

Figure 14 shows the statistical results for ramp skill score

calculated on the diurnally bias-corrected data. This correction

improves the ramp skill score for most of the models/seasons

by increasing the skill score up to 17% with annual improve-

ments of ;10%. The comparison of the original and bias-

corrected ramp skill scores (hatched boxed versus solid

color boxes in Fig. 14) shows a noticeable increase for the

bias-corrected HRRR models ramp skill, both control or experi-

mental, and much less of a change in ramp skill for the high-

resolution models, especially for the HRRRNEST EXP, because

the high-resolutionmodels havemuch smaller biases compared to

the low-resolution models. These ramp skill results are in an

agreement with 80-m biases found in Bianco et al. (2019).

7. Summary and conclusions

The Ramp Tool and Metric was applied to forecasts of 80-m

wind speed power data collected by 19 sodars and three lidars

FIG. 12. Composite diurnal cycle of down-ramp events from (top) the observations, (bottom left) HRRRCTL, and

(bottom right) HRRR EXP for the winter reforecast period. Matched ramps are shown in green.
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and the NWP HRRR and HRRRNEST models during the

second Wind Forecast Improvement Project (WFIP2). The

two models were chosen due to their small horizontal grid

spacing, 3 km and 750m, respectively, which is appropriate for

an area of complex terrain such as that of theWFIP2 campaign.

The two models were run in control and experimental config-

urations, with the experimental version including all the im-

provements introduced to the model physics during the

campaign, summarized in Olson et al. (2019a,b). The CTL

and EXP reforecast runs spanned four 6-week reforecast pe-

riods, one for each season, to test the dependence of the im-

provements on the season. The 80-m wind speeds measured by

the 19 sodars, three lidars, and converted into power using a

generic/normalized power curve, agreed well with the actual

wind power generation data provided by the Bonneville Power

Administration. The observational dataset was then used to

quantify the seasonal and diurnal variability of wind speed and

ramp events.

Due to the configuration of the reforecast runs, we calcu-

lated ramp skill over nonoverlapping 12-h blocks from con-

secutive simulations initialized at 0000 and 1200 UTC. The

‘‘forecast method’’ of the RT&M was adopted, which com-

pares each reforecast model run independently with the cor-

responding observations, but was used to calculate ramp skill

score only from forecast horizons 6–17 of each reforecast run to

reduce the impact of truncated ramps at the beginnings and

ends of the forecasts. Therefore, this result is only in qualitative

but not quantitative agreement with previous ramp skill model

estimation shown in Olson et al. (2019a) where all model

forecast horizons were used for the ramp skill score calculation.

The main findings are:

d Spring and summer show a well-defined diurnal trend of

wind speed, faster during the daytime and slower at night.

This diurnal trend was not observed in fall and winter. As a

consequence, in spring and summer, more up-ramp events

are found in the afternoon and evening, while more down-

ramps are found shortly before and after midnight. In con-

trast, the number of up- and down-ramps for fall and winter

are equally distributed over the entire diurnal cycle.
d We introduced a new visualization for ramps, using two

lines, a vertical one for power change and a horizontal one

for time duration, crossed at the ramp central time. This

visual tool helps to recognize patterns in the diurnal distri-

bution of ramp events and enables comparison of distribu-

tions between observed and model data.
d Results from the RT&M over aggregated data showed

higher scores for spring and summer compared to fall and

FIG. 13. As in Fig. 5, but for two days on 4–5 Feb 2017. Four columns of panels represent comparison of observed

data and model data for forecast hours Z00 and Z12 from left to right for HRRRCTL, HRRREXP, HRRRNEST

CTL, and HRRRNEST EXP.
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winter. The modified physics in the EXP runs produces

better skill scores only for winter, while the higher resolution

of the model improves the skill in almost all seasons except

winter for the HRRRNEST EXP. For the winter period the

HRRREXP has fewer ramps compared to other models, but

they are better matched to the observed ramps.
d The skill score improvements due to the resolution differ-

ences are almost always positive showing that the high-

resolutionmodel better resolves rapid changes in wind speed

in the complex terrain.
d Our analysis also allowed us to analyze the contribution from

the three terms of the ramp skill equation separately to find

out why one model is better than another for certain

reforecast periods.
d The diurnally bias-corrected models show higher ramp skill

scores for almost all models/seasons compared to the uncor-

rectedmodels, with up to 17% ramp score improvement for a

single seasonal reforecast period and;10% ramp skill score

improvement averaged annually, indicating that simply im-

proving the model’s mean diurnal cycle will significantly

improve ramp forecasts.
d Consistent with what was found during the first WFIP, more

up-ramp events are found in the time series of both observed

and forecast rated power than down-ramp events, (in this

study this is especially true for spring and summer). Also, the

skill score is always higher for up-ramps compared to down-

ramps. The reason for this is an area for future research.

Before the end of the WFIP2 field campaign a model freeze

was imposed to perform the four reforecast runs on which our

analysis is based. Several other studies, already referenced

throughout of the manuscript, were performed on these same

reforecast runs to measure the impact of the improved pa-

rameterizations over different meteorological aspects, pro-

viding further insight on how the model parameterizations can

be improved even further. On the basis of all these results,

other improvements and additions to the parameterizations

are currently under way, focusing on better simulating the di-

urnal cycle, which we believe will help to improve ramp pre-

diction. These include adding momentum transport to help

with the daytime nonlocal mixing, and seeking ‘‘missing’’ heating

terms such as compensational environmental subsidence associ-

ated with nonprecipitating convective updrafts and heating due to

the dissipation of TKE. If successful, these will be added to future

versions of the models.
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